CLI
The ReinforceNow command-line interface for training AI models.
Usage
rnow [OPTIONS] <COMMAND>Commands
rnow loginLogin to ReinforceNow platform
rnow initInitialize a new ReinforceNow project
rnow runSubmit project for training
rnow stopStop an active training run
rnow statusCheck current authentication status
rnow orgsList organizations or select one
rnow logoutLogout and remove stored credentials
rnow testTest RL rollouts locally before submitting
rnow downloadDownload a trained model checkpoint
rnow login
Login to ReinforceNow platform using OAuth device flow.
Usage
rnow login [OPTIONS]Options
--force
Force new login even if already authenticated
--api-url api-url
API base URL (default: https://www.reinforcenow.ai/api)
May also be set with the REINFORCE_API_URL environment variable.
--help
Display the help for this command
rnow init
Initialize a new ReinforceNow project in the current directory.
Usage
rnow init [OPTIONS]Options
--template template
Project template to use
Possible values:
- start: Default single-turn RL template (alias for rl-single)
- rl-single: Single-turn reinforcement learning (OpenMathReasoning dataset)
- rl-tools: Multi-turn RL with tool calling (BrowseComp dataset)
- tutorial-reward: Tutorial for creating reward functions
- tutorial-tool: Tutorial for training agents with tools
- sft: Supervised fine-tuning
- new: Minimal template
- blank: Empty project (config only)
--name name
Project name (prompts if not provided)
--help
Display the help for this command
Created Files
- config.yml - Project configuration
- train.jsonl - Training data
- rewards.py - Reward functions (RL only)
- env.py - Tool definitions (optional)
- requirements.txt - Python dependencies (optional)
rnow run
Submit project for training on ReinforceNow platform.
Usage
rnow run [OPTIONS]Options
--dir directory
Directory containing project files (default: current directory)
--name name
Custom name for the training run
--help
Display the help for this command
Required Files
- config.yml or config.json - Project configuration
- train.jsonl - Training data
- rewards.py - Reward functions (RL projects only)
Optional Files
- env.py - Custom tools/environment
- requirements.txt - Additional Python dependencies
Multi-Model Training
You can train multiple models with the same configuration by specifying model.path as a list in your config.yml:
model:
path:
- Qwen/Qwen3-4B-Instruct-2507
- Qwen/Qwen3-8B
- Qwen/Qwen3-30B-A3B
- openai/gpt-oss-20b
qlora_rank: 32When you run rnow run with a list of models, the CLI will:
- Validate LoRA rank compatibility for all models before starting
- Submit a separate training run for each model
- Display all run IDs and dashboard links
Example Output
$ rnow run
Runs submitted:
• Qwen3-4B-Instruct-2507: run_abc123
https://www.reinforcenow.ai/dashboard/runs/run_abc123
• Qwen3-8B: run_def456
https://www.reinforcenow.ai/dashboard/runs/run_def456
• Qwen3-30B-A3B: run_ghi789
https://www.reinforcenow.ai/dashboard/runs/run_ghi789
• openai/gpt-oss-20b: run_jkl012
https://www.reinforcenow.ai/dashboard/runs/run_jkl012rnow stop
Stop an active training run.
Usage
rnow stop <RUN_ID>Arguments
RUN_ID
Run ID from rnow run output
Prompts for confirmation before stopping. Shows duration and charges after stopping.
Options
--help
Display the help for this command
rnow status
Check authentication status and running jobs.
Usage
rnow statusShows whether you're authenticated, your active organization, and any currently running training jobs.
Options
--help
Display the help for this command
Example Output
$ rnow status
✓ Authenticated
Organization: org_abc123
Running jobs:
• run_xyz789 - My Project (training)rnow orgs
List all organizations you have access to, or select one as active.
Usage
rnow orgs [ORG_ID]Without arguments, lists all organizations with their IDs and your role in each. The active organization is highlighted. With an ORG_ID argument, sets that organization as active.
Arguments
ORG_ID (optional)
Organization ID to set as active
Options
--help
Display the help for this command
Example
# List all organizations
rnow orgs
# Set active organization
rnow orgs org_abc123rnow logout
Logout from ReinforceNow and remove stored credentials.
Usage
rnow logoutOptions
--help
Display the help for this command
rnow test
Test RL rollouts locally before submitting to the platform.
Usage
rnow test [OPTIONS]Options
--dir, -d directory
Project directory containing config.yml, rewards.py, env.py, train.jsonl (default: current directory)
--num-rollouts, -n count
Number of rollouts to run (default: 3)
--multi-turn / --single-turn
Allow multi-turn rollouts or force single-turn (default: --multi-turn)
--with-tools / --no-tools
Enable or disable tool use during rollout (default: --with-tools)
--model model
Override model name for sampling (otherwise uses config.model.path)
--api-url url
Base URL of the Next.js backend (default: https://www.reinforcenow.ai)
May also be set with the RNOW_API_URL environment variable.
--truncate, -t chars
Truncate message content to N characters (default: no truncation)
--verbose, -v
Show detailed output for each rollout turn
--help
Display the help for this command
Example
# Run 5 test rollouts with truncated output
rnow test -n 5 -t 200
# Test single-turn without tools
rnow test --single-turn --no-tools
# Test with a different model
rnow test --model Qwen/Qwen3-8BOutput
The command displays a spinner while running, then shows each rollout result with:
- Message history with colored role tags (
[system],[user],[assistant],[tool]) - Reward scores for each reward function
- Number of turns and tool calls
rnow download
Download a trained model checkpoint after a run completes.
Usage
rnow download <RUN_ID> [OPTIONS]Arguments
RUN_ID
The run ID to download the model from
Options
--output, -o directory
Output directory for the downloaded model (default: ./model)
--help
Display the help for this command
Example
# Download model to default ./model directory
rnow download run_abc123
# Download to a custom directory
rnow download run_abc123 -o ./my-trained-model